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We analytically calculate the perturbation expansion of the two-point correlation function (propagator)
of the scalar, dissipative quantum φ4 theory up to third order in the interaction parameter λ. The calculations
are carried out with two different methods. The first is based on a brute force computation of all interactions
appearing in the perturbation expansion term by term at the given order of the perturbation, supported by
the use of a symbolic mathematical code. The second uses an efficient perturbation scheme which allows
one to hierarchically organize terms within a given order in the perturbation expansion based on the number
of occurrences of the free evolution operator Rfree

s ; in addition, it allows one to utilize information from
already computed lower-order terms in the calculation of higher-order terms. The two methods yield the
same result. In the limit of zero dissipation (zero friction coefficient γ), our result coincides with that
obtained from the Lagrangian approach in D ¼ dþ 1 dimensions (d denotes the number of space
dimensions, while D includes the time dimension) with the use of D-dimensional vectors, re-expressed in
terms of only d-dimensional space integrals by integrating out the zero component. We have also verified
that the value of the critical coupling constant λ� as a function of space dimensionality d, which can be used
to evaluate perturbation expansions at the physical length scale lm, comes out correctly from our third-
order calculation.

DOI: 10.1103/PhysRevD.104.076007

I. INTRODUCTION

In quantum field theories, Feynman diagrams involving
closed loops require integration over all possible combina-
tions of energy and momentum of the virtual particles
traveling around the loop and are often divergent. To treat
such divergences, renormalization of the parameters of the
theory is required [1–3]. Behind renormalization is the
problem of the proper, successive elimination of degrees
of freedom in the effort to bridge awide range of length scales
and, in relativistic quantum field theory, clearly also of time
scales [4–6].Renormalization specifies relationshipsbetween
parameters in the theory whose values at large length scales
are different from the values at short length scales.
Considering irreversibility to be an intrinsic feature of any

quantum field theory, since the divergences arise from
spontaneous particle creation and annihilation (processes

that are far beyondourmechanistic control being too fast and
too local) [6], it is natural to introduce a dissipative
smoothing mechanism which can provide ultraviolet regu-
larization, even in the thermodynamic limit. The corre-
sponding friction parameter is related to a small
characteristic length scale such that phenomena below this
scale cannot be resolved by the theory, and only phenomena
above this characteristic length scale can be addressed [4].
The slow, large-scale, low-energy features of a dissipative

quantum system are most naturally described by a thermo-
dynamic quantum master equation for the evolution of the
densitymatrix in Fock space [7,8], which, by construction, is
driven to equilibrium. The quantum master equation
describes collisions of free particles (field quanta) as well
as the interaction with a heat bath representing small-scale
features. The dissipative coupling to the bath is assumed to
be very weak (except at short length scales) implying that
short-scale features are erased very rapidly whereas large-
scale ones remain unaffected. In general, thermodynamic
quantum master equations are nonlinear in the density
matrix [9–11], a feature which clearly distinguishes them
from the popular Lindblad master equations [12].
Quantum master equations for dissipative systems

involve decay rates γk which are negligible for small k
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but increase rapidly for large k. The following concrete
functional form for γk has been proposed [4]:

γk ¼ γ0 þ γk4; ð1Þ

where the parameter γ0 has been added so that also the state
with k ¼ 0 is subject to some dissipation. As we are
eventually interested in the limit γk → 0, the parameters
γ0 and γ should be regarded as small. Within the natural
units convention (ℏ ¼ c ¼ 1, where ℏ is the reduced Planck
constant and c the speed of light), γ0 has units of mass
and γ units of mass−3. A small characteristic length scale
associated with dissipation can hence be introduced as
lγ ¼ γ1=3.
The dissipative coupling to the heat bath in the thermo-

dynamic quantum master equation provides a proper high-
energy (ultraviolet) cutoff, thus a regularization of the
theory for dynamic properties. As we will also see below, in
the intermediate mathematical calculations involved in
computing correlation functions, the regularizing effect
of dissipation is typically contained in the use of modified
frequencies ω̆k ¼ ωk − iγk and their complex conjugates.
Clearly, if one neglects irreversible contributions to dynam-
ics, the regularizing effect of dissipation is lost. Similarly, if
no dynamic regularization is needed, one can perform the
limit of vanishing friction before doing any calculations.
As explained in [4], thermodynamic dissipative regulari-

zation is attractive also for another reason: the use of a
thermodynamically consistent quantum master equation
guarantees a controlled long-time behavior due to the robust
thermodynamic structure of the evolution equations that is
not shared by the usual regularization methods. As an
important consequence, correlation functions can be rigor-
ously reformulated in terms of free vacuum expectation
values. In the case of the scalar theory with quartic inter-
actions (φ4 theory), in particular, two-point and four-point
correlation functions are of interest. The first includes two
fields and serves to define the propagator, while the second
includes four fields and corresponds to the effective inter-
action vertex. The latter has helped [4] compute the fixed
point value of the dimensionless coupling constant [3].
In this work, we apply the dissipative quantum field

theory [4] to calculate the two-point correlation function
(propagator) of the scalar φ4 theory up to third order in the
interaction parameter λ. In Sec. II, we introduce the basic
equations and we highlight two different methodologies for
evaluating the two-point correlation function in the context
of the dissipative theory, both leading to the same exact
result. The final result for the propagator up to third order is
derived in Sec. III. In Sec. IV, we demonstrate the
equivalence, in the limit of zero dissipation, with the
Lagrangian approach to quantum field theory starting from
D ¼ dþ 1 space-time dimensions. In Sec. V, we propose a
regularization leading to parameters that avoid divergent
contributions and hence to a finite expression. In Sec. VI,

we discuss the calculation of the critical value λ� of the
coupling constant λ of the theory. We conclude with
Sec. VII summarizing the most important results of
our work.

II. DISSIPATIVE SCALAR FIELD THEORY

The dissipative scalar field theory is based on one kind of
bosonic quanta associated with the creation and annihila-
tion operators a†k and ak, respectively. For massive quanta,
the free Hamiltonian reads

Hfree ¼
X
k∈Kd

ωka
†
kak; ð2Þ

with the following relativistic energy-momentum relation
for a particle with mass m and momentum k ¼ jkj:

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
: ð3Þ

The quartic interactions are described by the Hamiltonian

Hcoll ¼ λ

96

1

V

X
k1;k2;k3;k4∈Kd

δk1þk2þk3þk4;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk1ωk2ωk3ωk4

p

× ða−k1a−k2a−k3a−k4 þ4a†k1a−k2a−k3a−k4

þ6a†k1a
†
k2
a−k3a−k4 þ4a†k1a

†
k2
a†k3a−k4 þa†k1a

†
k2
a†k3a

†
k4
Þ

þλ0

4

X
k∈Kd

1

ωk
ðaka−kþ2a†kakþa†ka

†
−kÞþ λ00V; ð4Þ

where we have introduced a d-component version of
Kronecker’s δ symbol and the parameters

λ0 ¼ λ
1

V

X
k∈Kd

1

4ωk
; λ00 ¼ 1

2
λ

�
1

V

X
k∈Kd

1

4ωk

�
2

: ð5Þ

The interaction parameter λ characterizes the strength of the
quartic interaction.
The zero-temperature [β → ∞, β ¼ 1=ðkBTÞ] quantum

master equation summarizing Hamiltonian and irreversible
dynamics is given by

dΔρt
dt

¼ −i½H;Δρt�
þ

X
k∈Kd

γkð2akΔρta†k − a†kakΔρt −Δρta
†
kakÞ

−
X
k∈Kd

γk
ωk

ð½ak;Δρt½a†k;Hcoll�� þ ½a†k; ½ak;Hcoll�Δρt�Þ;

ð6Þ

where Δρt ¼ ρt − ρeq denotes the deviation from the equi-
librium (ground-state) density matrix, H ¼ Hfree þHcoll is
the full Hamiltonian, and γk is the decay rate defined by
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Eq. (1). The first term on the right-hand side of Eq. (6)
describes the reversible contribution to time evolution, while
the other terms are of irreversible nature. The general
thermodynamic master equation for a quantum system in
contact with a heat bath with temperature T is shown in [11].
Any ground state of the interacting theory can be written as
jΩi ¼ j0i þ jωi, where jωi has no component along the
vacuum state j0i and can be evaluated as

jωi ¼
X∞
n¼1

½−Rfree
0 Hcoll�nj0i: ð7Þ

In Eq. (7), Rfree
0 is a self-adjoint operator defined as

Rfree
0 ¼ ðHfreeÞ−1P0 ¼ P0ðHfreeÞ−1 ¼ P0ðHfreeÞ−1P0, where

Hfree is the free Hamiltonian defined by Eq. (2) and P0 the
projector operator P0 ¼ 1 − j0ih0j suppressing the ground
state. Throughout this work, we use natural units with
ℏ ¼ c ¼ 1, where ℏ is the reduced Planck constant and c
the speed of light.
On the basis of the zero-temperature quantum master

equation, Eq. (6), the following Laplace-transformed two-
point correlation function of the operators A1 and A2 is
considered:

C̃A2A1
s ¼ tr½A2RsðA1ρeqÞ�; ð8Þ

where trðA1ρeqÞ ¼ 0. In this work, A1 and A2 are chosen to
be the Fourier components of the free particle field

A1 ¼ φk ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ða†k þ a−kÞ; ð9aÞ

and

A2 ¼ φ−k ¼
1ffiffiffiffiffiffiffiffi
2ωk

p ða†−k þ akÞ: ð9bÞ

In Eq. (8), Rs is the Laplace-transformed evolution super-
operator {see Eq. (1.82) of [4]} for which we have the
following perturbation expansion around Rfree

s :

Rs ¼ Rfree
s þRfree

s LcollRfree
s

þRfree
s LcollRfree

s LcollRfree
s þ � � � : ð10Þ

Within the simplified irreversible dynamics (SID)
assumption [4] (namely, that we neglect terms that will
eventually disappear in the limit γ → 0 at an early stage of
the calculation), the linear collision superoperator Lcoll is
given by

LcollðρÞ ¼ −i½Hcoll; ρ�: ð11Þ

Regarding the action of the free evolution operatorRfree
s on

an operator X of the general form

X ¼ a†k1…a†kn j0ih0jak0n…ak0
1
; ð12Þ

in the context of the SID assumption, we have

Rfree
s ðXÞ ¼ X

sþ iðω̆k1 þ…þ ω̆kn − ω̆�
k0
1
−…− ω̆�

k0n
Þ : ð13Þ

In the special case where the free evolution operator Rfree
s

acts directly on the dual state j0ih0j, the result is
Rfree

s ðj0ih0jÞ ¼ 1=s. In the denominator of Eq. (13), the
modified frequencies ω̆kj , along with their complex con-
jugates ω̆�

kj
, are given by

ω̆kj ¼ ωkj − iγkj ; ð14Þ

and contain the regularizing effect of dissipation. Similar to
Rfree

s is the action of the self-adjoint operator Rfree
0 shown in

Eq. (7). In particular, taking into account the operator X of
Eq. (13), it is crucial to know whether Rfree

0 acts on the left
or right side of X. The result of the action is the inverse of
the sum of the standard frequencies of the corresponding
operators,

Rfree
0 ðXÞ ¼ X

ωk1 þ…þωkn

; ðXÞRfree
0 ¼ X

ωk0
1
þ…þωk0n

:

ð15Þ

In the special case where the self-adjoint operator Rfree
0 acts

only on the dual state j0ih0j, the result is equal to zero [i.e.,
Rfree
0 ðj0ih0jÞ ¼ 0]. Hence, the perturbation expansion for

the zero-temperature equilibrium density matrix around the
dual vacuum state is obtained from

ρeq ¼
jΩihΩj
hΩjΩi ; ð16Þ

where jΩi ¼ j0i þ jωi with Eq. (7) for jωi.
By directly substituting Eqs. (9)–(11) and (16) into

Eq. (8), we obtain the following third-order expansion
for the correlation function:
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C̃A2A1
s ¼ trfA2Rfree

s A1j0ih0j
þ ½A2Rfree

s LcollRfree
s A1j0ih0j − A2Rfree

s A1Rfree
0 Hcollj0ih0j − A2Rfree

s A1j0ih0jHcollRfree
0 �

þ ½A2Rfree
s LcollRfree

s LcollRfree
s A1j0ih0j − A2Rfree

s LcollRfree
s A1Rfree

0 Hcollj0ih0j
− A2Rfree

s LcollRfree
s A1j0ih0jHcollRfree

0 þ A2Rfree
s A1Rfree

0 Hcollj0ih0jHcollRfree
0

þ A2Rfree
s A1ðRfree

0 HcollÞ2j0ih0j þ A2Rfree
s A1j0ih0jðHcollRfree

0 Þ2
− A2Rfree

s A1j0ih0jh0jHcollðRfree
0 Þ2Hcollj0i�

þ ½A2Rfree
s LcollRfree

s LcollRfree
s LcollRfree

s A1j0ih0j − A2Rfree
s LcollRfree

s LcollRfree
s A1Rfree

0 Hcollj0ih0j
− A2Rfree

s LcollRfree
s LcollRfree

s A1j0ih0jHcollRfree
0 þ A2Rfree

s LcollRfree
s A1Rfree

0 Hcollj0ih0jHcollRfree
0

þ A2Rfree
s LcollRfree

s A1ðRfree
0 HcollÞ2j0ih0j þ A2Rfree

s LcollRfree
s A1j0ih0jðHcollRfree

0 Þ2
− A2Rfree

s LcollRfree
s A1j0ih0jh0jHcollðRfree

0 Þ2Hcollj0i − A2Rfree
s A1Rfree

0 Hcollj0ih0jðHcollRfree
0 Þ2

− A2Rfree
s A1ðRfree

0 HcollÞ2j0ih0jHcollRfree
0 þ A2Rfree

s A1j0ih0jh0jHcollRfree
0 ðRfree

0 HcollÞ2j0i
þ A2Rfree

s A1j0ih0jh0jðHcollRfree
0 Þ2Rfree

0 Hcollj0i
þ A2Rfree

s A1Rfree
0 Hcollj0ih0jh0jHcollðRfree

0 Þ2Hcollj0i
þ A2Rfree

s A1j0ih0jHcollRfree
0 h0jHcollðRfree

0 Þ2Hcollj0i
− A2Rfree

s A1ðRfree
0 HcollÞ3j0ih0j − A2Rfree

s A1j0ih0jðHcollRfree
0 Þ3�g: ð17Þ

In deriving Eq. (17), use was made of a symbolic code
which is described in detail in a forthcoming publication.
The first term inside the trace on the right-hand side of

Eq. (17) corresponds to the zeroth-order contribution, while
the second line to the first order. The second-order con-
tribution is displayed in the next four lines. The rest of the
terms define the third-order contribution. Overall, Eq. (17)
can be decomposed as

C̃A2A1
s ¼ C̃A2A1

s;0 þ C̃A2A1

s;1 þ C̃A2A1

s;2 þ C̃A2A1

s;3 ; ð18Þ

where the subscripts 0, 1, 2, and 3 denote the respective
zeroth-, first-, second-, and third-order contributions.
It turns out that one can get the same result [that is,

Eq. (17)] through an alternative, more efficient scheme,
wherein one utilizes information from already computed
lower-order terms to calculate higher-order terms [4]. This
scheme is motivated by the stochastic unraveling of the
fundamental quantum master equation (see Sec. 1.2.8 of
[4]) and leads to a more well-structured and less time-
consuming calculation procedure. It describes interactions
between particles as collisions occurring at a certain rate,
while treating the dissipative dynamics of the free evolution
between collisions rigorously.

III. THE PROPAGATOR UP TO THIRD ORDER

We proceed now to the calculation of all terms of
Eq. (17) one by one. For completion, we report here not
only the expression for the third-order contribution to the
propagator of the dissipative, scalar φ4 theory but also the

expressions for the first- and second-order terms which
have already been derived in [4].
All the operations involved were computed both by hand

and by the symbolic code.

A. Zeroth-order propagator

The zeroth-order contribution to the two-point correla-
tion function arises from the first line of Eq. (17), with A1

and A2 given by Eq. (9). The final result after keeping only
terms symmetric in s is

C̃A2A1

s;0 ¼ −i
2ðs2 þ ω2

kÞ
: ð19Þ

Laplace transformsprobe the exponential decayor increase of
functions in the direction of positive time. In the case of
reversible dynamics, both directions of time are equivalent,
and the Laplace transforms are symmetric in the Laplace
variable s. Irreversible contributions to dynamics lead to
predominantly antisymmetric results in s. Aswe are primarily
interested in the usual reversible physics and not in small
dissipative contributions per se, but only in their regularizing
effect on reversible dynamics, we consider only the familiar
symmetric part of Laplace transformed correlation functions.
Equation (19) is in agreement with the first term of

Eq. (2.31) in [4]; the primary expression for the zeroth-
order result is the first term in Eq. (2.29) in [4] and one goes
to Eq. (19) by neglecting terms antisymmetric in s, with the
corresponding trace being evaluated by repeated use of
the commutation relations for creation and annihilation
operators.
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B. First-order propagator

The first-order term contributing to the propagator is

C̃A2A1

s;1 ¼ iλ0

2ðs2 þ ω2
kÞ2

; ð20Þ

which is symmetric in s and comes from the second line
of Eq. (17). As with the zeroth-order result shown in
Sec. III A, Eq. (20) is identical to the second term of
Eq. (2.31) in [4]. It is worth mentioning that, to this order,
only terms proportional to λ0 [coming from the interaction
Hamiltonian, Eq. (4)] contribute.

C. Second-order propagator

To compute the second-order terms in the perturbation
expansion of Eq. (17), only the four-particle interactions
proportional to λ [through the interaction Hamiltonian,
Eq. (4)] are taken into account, because the terms propor-
tional to λ0 and λ00 contribute to higher-order terms [4]. The
final result is obtained after applying once more the SID
assumption (i.e., by taking all differences between modified
complex frequencies and their conjugate counterparts in the
numerators to be zero, since eventually we are interested in
the limit of zero dissipation), after symmetrizing with
respect to s, and after performing the thermodynamic limit
(where we pass from Kd to K̄d in the sums [4]); it reads

C̃A2A1

s;2 ¼ −
λ2

48V2

i
ðs2 þ ω2

kÞ2

×
X

k1;k2;k3∈K̄d

δk1þk2þk3;k

ωk1ωk2ωk3

ω̆k1 þ ω̆k2 þ ω̆k3

s2 þ ðω̆k1 þ ω̆k2 þ ω̆k3Þ2
;

ð21Þ
originating from the terms between the third and the sixth
lines in Eq. (17). The topology of the connected Feynman

diagram depicting the second-order contribution to the
propagator is shown in Fig. 1 [4].

D. Third-order propagator

The third-order contribution consists of three types of
terms: (i) connected-1 (abbreviated as c-1 in the following),
(ii) connected-2 (abbreviated as c-2 in the following), and
(iii) unconnected terms. A topological representation of the
corresponding Feynman diagrams is provided in Figs. 2–4.
Additionally, no terms corresponding to tadpole diagrams
(i.e., diagrams that contain parts that are attached to the rest
of the diagram through a single vertex and are independent

FIG. 1. Topology of the connected Feynman diagram contrib-
uting to the propagator to second-order in perturbation theory [4].

FIG. 2. Topology of the connected-1 Feynman diagram con-
tributing to the propagator to third-order in perturbation theory.

FIG. 3. Topology of the connected-2 Feynman diagram con-
tributing to the propagator in third-order perturbation theory.
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of the external momentum) are produced due to the
repeated use of normal ordering as discussed in [4].
In the corresponding symbolic code, connected-1 terms

involve two Kronecker δ functions defining a specific
relation among the six d vectors of the interacting fields
(k1, k2, k3, k4, k01) and the momentum k of the free particle.
The distinguishing feature is that the k index appears only
in one of the two Kronecker δ functions (i.e., δk1þk2−k3−k4;0
and δk1þk2þk0

1
−k;0). Connected-2 terms are characterized by

the complete absence of any Kronecker δ functions;
more specifically, the Kronecker functions in this case
are of the form δk1þk0

1
;0 and δk1þk2þk3þk4;0 independent of

the external momentum k. Unconnected contributions to
the propagator contain two Kronecker δ functions, none of
which includes the momentum index k of the propagating
particle.
The final result for the third-order contribution to

the propagator is obtained by (a) keeping all the terms
which are symmetric with respect to the s variable,
(b) applying the SID assumption, and (c) symmetrizing
the intermediate result with respect to the pairs of indices
(k1, k2) and (k3, k4). The resulting expression for the
connected-1 term is

C̃A2A1

s;3ðc−1Þ ¼
λ3

128V3

i
ðs2 þ ω2

kÞ2
X

k1;k2;k3;k4;k01∈K̄
d

δk1þk2−k3−k4;0δk1þk2þk0
1
−k;0

ωk1ωk2ωk3ωk4ωk0
1

×
�

1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

s2 þ ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 −

ω̆k1 þ ω̆k2 þ ω̆k0
1

s2 þ ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2
�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

s2 þ ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 þ

ω̆k1 þ ω̆k2 þ ω̆k0
1

s2 þ ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2
��

; ð22Þ

and for the connected-2 term

C̃A2A1

s;3ðc−2Þ ¼
λ3

192V3

i
ðs2 þ ω2

kÞ2
X

k1;k2;k3;k4∈K̄d

δk1−k2−k3−k4;0
ω2
k1
ωk2ωk3ωk4

ð2ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4Þ
2ω̆k1ðω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4Þ2

: ð23Þ

Overall, summing up the terms shown in Eqs. (19), (20), (21), (22), and (23), we arrive at the following compact expression
for the propagator up to third order in λ (with C̃A2A1

s ≡ Δ̃sk):

Δ̃sk ¼
−i

2ðs2 þ ω2
kÞ

þ iλ0

2ðs2 þ ω2
kÞ2

−
λ2

48V2

i
ðs2 þ ω2

kÞ2
X

k1;k2;k3∈K̄d

δk1þk2þk3;k

ωk1ωk2ωk3

ω̆k1 þ ω̆k2 þ ω̆k3

s2 þ ðω̆k1 þ ω̆k2 þ ω̆k3Þ2

þ λ3

128V3

i
ðs2 þ ω2

kÞ2
X

k1;k2;k3;k4;k01∈K̄
d

δk1þk2−k3−k4;0δk1þk2þk0
1
;k

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

s2 þ ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 −

ω̆k1 þ ω̆k2 þ ω̆k0
1

s2 þ ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2
�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

s2 þ ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 þ

ω̆k1 þ ω̆k2 þ ω̆k0
1

s2 þ ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2
��

þ λ3

192V3

i
ðs2 þ ω2

kÞ2
X

k1;k2;k3;k4∈K̄d

δk1−k2−k3−k4;0
ω2
k1
ωk2ωk3ωk4

ð2ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4Þ
2ω̆k1ðω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4Þ2

: ð24Þ

FIG. 4. Topology of the unconnected term in third-order
perturbation theory.
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Equation (24) was obtained through our symbolic code
and by hand (the latter might not be easy for higher-order
contributions), and it is the key result of this work. In the
next sections of the paper, we discuss (i) the reduced form
of Eq. (24) in the limit of vanishing dissipation and the
equivalence with Lagrangian quantum field theory, (ii) the
regularization of Eq. (24) so that divergences are avoided,
and (iii) the critical behavior of the theory.

IV. LIMIT OF VANISHING DISSIPATION:
EQUIVALENCE WITH LAGRANGIAN

QUANTUM FIELD THEORY

Of interest is how the previous expressions for the
connected contributions up to third order reduce in the
limit of vanishing friction parameter, γ → 0. This is
important because it allows us to make the connection
with the expressions for the propagator evaluated by using
the D-vector formalism of the Lagrangian approach.
Equations (21)–(23) in the limit of vanishing dissipation

(by replacing ω̆kj with ωkj) must coincide with those
obtained from the Lagrangian approach in D ¼ dþ 1
dimensions (d denotes the number of space dimensions
and D the number of spaceþ time dimensions) with the
use of D vectors. To prove this, we can bring our result in
integral form and then go from C̃A2A1

s to C̃A2A1

iω and finally to
iCA2A1

ω . This is achieved as follows: (a) We pass from sums
to integrals (corresponding to the limit of infinite volume)
by using the rule shown in Eq. (2.41) of [4],

1

V

X
k∈K̄d

→
1

ð2πÞd
Z

ddk; ð25Þ

and from the Kronecker δ symbol to the Dirac δ function.
(b) Then, we pass from Laplace to Fourier transforms (i.e.,
from positive s to imaginary �ω) by setting s → �iω.

(c) Afterwards, we observe the symmetry property Δ̃sk ¼
Δ̃s−k of the second- and third-order contributions and
use [4]

iCA2A1
ω ¼ C̃A2A1

iω þ C̃A1A2

−iω ; ð26aÞ

and

iΔωk ¼ Δ̃iωk þ Δ̃−iω−k: ð26bÞ

Note that in the passage from C̃iωk to iCωk there is
an extra multiplying factor of 2 due to Eq. (26b)
(i.e., iCA2A1

ω ¼ 2C̃A2A1

iω ).
On the other hand, in the Lagrangian approach, we

obtain the contributions to the propagator in D dimensions
with the help of the Feynman diagrams shown in Figs. 1–3
[2,13]. The D components of a space-time vector kj are
written as kj ¼ ðκj; kjÞ, where κj is real and kj has d
components. Similarly, we use k ¼ ðω; kÞ. It is significant
to mention that throughout this work we use the Minkowski
metric ημν ¼ ημν with signature ð−;þ;þ;þÞ, that is,
η00 ¼ η00 ¼ −1 (see Appendix E of [13]). Then, we
integrate out the zero component of theD vectors, reducing
to d-dimensional expressions. The calculation proceeds by
replacing the factors contained in the D-dimensional δ
functions by their one-dimensional Fourier representation
and then performing the factorized integrations over
momenta by means of Cauchy’s integral formula.
Therefore, one can perform the integration resulting from
the Fourier representation of the δ functions (see also the
identity shown in Eq. (2.57) of [4] regarding the second-
order term).
By doing these calculations, we arrive at the following

expressions:

Cd-vec
ω;2 ¼ −i

ðω2 − ω2
k þ iεÞ2

1

22Cð2Þ
sf

λ2

ð2πÞ2d
Z

ddk1ddk2ddk3
ωk1ωk2ωk3

δðk1 þ k2 þ k3 − kÞ ωk1 þ ωk2 þ ωk3

ðωk1 þ ωk2 þ ωk3Þ2 − ω2
; ð27Þ

Cd-vec
ω;3ðc−1Þ ¼

i
ðω2 − ω2

k þ iεÞ2
1

24Cð3Þ;c−1
sf

λ3

ð2πÞ3d
Z

ddk1ddk2ddk3ddk4ddk01
δðk1 þ k2 þ k01 − kÞδðk1 þ k2 − k3 − k4Þ

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ωk1 þ ωk2 − ωk3 − ωk4

�
ωk3 þ ωk4 þ ωk0

1

ðωk3 þ ωk4 þ ωk0
1
Þ2 − ω2

−
ωk1 þ ωk2 þ ωk0

1

ðωk1 þ ωk2 þ ωk0
1
Þ2 − ω2

�

þ 1

ωk1 þ ωk2 þ ωk3 þ ωk4

�
ωk3 þ ωk4 þ ωk0

1

ðωk3 þ ωk4 þ ωk0
1
Þ2 − ω2

þ ωk1 þ ωk2 þ ωk0
1

ðωk1 þ ωk2 þ ωk0
1
Þ2 − ω2

��
; ð28Þ

and
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Cd-vec
ω;3ðc−2Þ ¼

−i
ðω2 − ω2

k þ iεÞ2
1

23Cð3Þ;c−2
sf

λ3

ð2πÞ3d
Z

ddk1ddk2ddk3ddk4
ω2
k1
ωk2ωk3ωk4

δðk1 − k2 − k3 − k4Þ

×

�
1

ω2
k1
− ðωk2 þ ωk3 þ ωk4Þ2

�½ðωk2 þ ωk3 þ ωk4Þ − ωk1 �ð2ωk1 þ ωk2 þ ωk3 þ ωk4Þ
2ωk1ðωk1 þ ωk2 þ ωk3 þ ωk4Þ

��

¼ i
ðω2 − ω2

k þ iεÞ2
1

23Cð3Þ;c−2
sf

λ3

ð2πÞ3d

×
Z

ddk1ddk2ddk3ddk4
ω2
k1
ωk2ωk3ωk4

δðk1 − k2 − k3 − k4Þ
ð2ωk1 þ ωk2 þ ωk3 þ ωk4Þ

2ωk1ðωk1 þ ωk2 þ ωk3 þ ωk4Þ2
; ð29Þ

where Cð2Þ
sf ¼ 6, Cð3Þ;c−1

sf ¼ 4 and Cð3Þ;c−2
sf ¼ 12 denote the

symmetry factors of the second-order, third-order con-
nected-1, and third-order connected-2 diagrams, respec-
tively {e.g., see Eq. (4.27) of [14] or Eq. (11) of [15] or p.
93 of [2]}. The above expressions, Eqs. (27)–(29), coincide
with the nondissipative version of Eqs. (21)–(23) by also
making use of Eqs. (25) and (26).
This fundamental result demonstrates the complete

equivalence of the dissipative approach (in the limit of
zero dissipation) to the Lagrangian method.

V. REGULARIZATION

As discussed in [4], the parameters λ0 and Z are not
unique, and their values can be chosen in such a way so as

to regularize the expression for the propagator obtained
when we apply the limits of (a) infinite system volume V
and (b) vanishing friction parameter γ. A natural condition
to impose is

iðs2 þ ω̆2
kÞ2ZΔ̃sk ¼ iðs2 þ ω̆2

kÞ2Δ̃free
sk ; for k ¼ 0; ð30Þ

where, according to Eq. (19), Δ̃free
sk ¼ ð−iÞ=½2ðs2 þ ω2

kÞ�.
By substituting Eq. (24) into Eq. (30), expanding the left-
hand side up to second order in s using the expansion

ω̆

s2 þ ω̆2
¼ 1

ω̆

X∞
n¼0

�
−
s2

ω̆2

�
n
; ð31Þ

and matching terms order by order with the right-hand side,
we obtain the following expressions in the context of the
SID assumption:

Z ¼ 1þ λ2

24V2

X
k1;k2;k3∈K̄d

δk1þk2þk3;0

ωk1ωk2ωk3

1

ðω̆k1 þ ω̆k2 þ ω̆k3Þ3
−

λ3

64V3

X
k1;k2;k3;k4;k01∈K̄

d

δk1þk2−k3−k4;0δk1þk2þk0
1
;0

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
1

ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ3 −

1

ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ3
�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
1

ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ3 þ

1

ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ3
��

; ð32Þ

and

λ0 ¼ λ2

24V2

X
k1;k2;k3∈K̄d

δk1þk2þk3;0

ωk1ωk2ωk3

�
1

ω̆k1 þ ω̆k2 þ ω̆k3

þ m2

ðω̆k1 þ ω̆k2 þ ω̆k3Þ3
�
−

λ3

64V3

X
k1;k2;k3;k4;k01∈K̄

d

δk1þk2−k3−k4;0δk1þk2þk0
1
;0

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
1

ω̆k3 þ ω̆k4 þ ω̆k0
1

−
1

ω̆k1 þ ω̆k2 þ ω̆k0
1

�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
1

ω̆k3 þ ω̆k4 þ ω̆k0
1

þ 1

ω̆k1 þ ω̆k2 þ ω̆k0
1

�

þ m2

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
1

ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ3 −

1

ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ3
�

þ m2

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
1

ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ3 þ

1

ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ3
��

−
λ3

96V3

X
k1;k2;k3;k4∈K̄d

δk1−k2−k3−k4;0
ω2
k1
ωk2ωk3ωk4

ð2ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4Þ
2ω̆k1ðω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4Þ2

: ð33Þ
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From Eqs. (32) and (33), one can make the following
remarks regarding third-order contributions: (a) The con-
nected-1 terms are included in both Z and λ0 (the terms with
the factor 1=64). (b) The connected-2 terms contribute only
to λ0 (the term with the factor 1=96), since they do not
depend on the external momentum k of the free particle.
The above are the values ofZ and λ0 for whichwe expect a

well-defined correlation function in the limit of vanishing
friction, for all s and k. In order to obtain the regularized
expression for the propagator, we do the following (see also
the Appendix): (i) Using Eqs. (32) and (33) for γ ¼ 0, we
obtain the expression for ðs2 þ ω2

kÞ2ðZΔ̃sk − Δ̃free
sk Þ in the

limit of vanishing friction. A nice point to note here is that the
contribution from the connected-2 diagram [the last two lines
in Eq. (24)] vanishes. (ii) Afterwards, we analyze the
convergence characteristics of the resulting expression, using
the expansion shown in Eq. (31). In the consequent expres-
sion, Eq. (A1), there are terms proportional to ðωkaþωkbþ
ωkcÞ−1 which lead to a power-law divergence for d > 2, as

well as terms proportional to ðωka þ ωkb þ ωkcÞ−3 leading to
a logarithmic divergence for d ¼ 3. In order to avoid
divergent results, the sums containing the above problematic
terms, Eq. (A2), must remain finite for an infinitely large
lattice K̄3 ofmomentum vectors ind ¼ 3 dimensions. This is
ensured through a numerical calculation. (iii) Subsequently,
we pass from sums to integrals (corresponding to the limit of
infinitevolume) using the rule shown inEq. (25) and from the
Kronecker δ symbol to the Dirac δ function with the help of
Eq. (26b). (iv) Furthermore, we would like the resulting
expression to be covariant and hence to depend only on
ðω2 − k2Þ. In [4], it was shown that this is indeed the case for
the second-order propagator. In Sec. IV, we discussed the
equivalence between the D-dimensional and the d-dimen-
sional (by integrating the zero component) expressions
obtained from the Lagrangian approach, demonstrating also
the covariance of the third-order terms. This allows us to
rewrite the resulting expression for k ¼ 0, in a different form,
Eq. (A3), which can be further simplified to

ðZΔωk−Δfree
ωk Þ ¼−

λ2

24ð2πÞ2d
ðω2 − k2Þ2
ðω2−ω2

kÞ2
Z

ddk1ddk2ddk3
ωk1ωk2ωk3

δðk1þ k2þ k3Þ
1

ðωk1 þωk2 þωk3Þ3
1

ðωk1 þωk2 þωk3Þ2− ðω2 − k2Þ

þ λ3

64ð2πÞ3d
2ðω2− k2Þ2
ðω2−ω2

kÞ2
Z

ddk1ddk2ddk3ddk4ddk01
ωk1ωk2ωk3ωk4ωk0

1

δðk1þ k2− k3− k4Þδðk1þ k2þ k01Þ

×
1

ðωk1 þωk2 −ωk3 −ωk4Þðωk1 þωk2 þωk3 þωk4Þ
�

ωk1 þωk2

ðωk3 þωk4 þωk0
1
Þ3½ðωk3 þωk4 þωk0

1
Þ2 − ðω2− k2Þ�

−
ωk3 þωk4

ðωk1 þωk2 þωk0
1
Þ3½ðωk1 þωk2 þωk0

1
Þ2− ðω2− k2Þ�

�
; ð34Þ

which is the regularized result of our dissipative approach at
zero friction. A direct power counting in Eq. (34) proves that
all terms are nicely convergent for d ≤ 3, thus producing a
finite result, which is what we wanted to achieve.
In an alternative regularization scheme, the so-called “on

shell renormalization”, one can expand not with respect to

ω2 − k2 but with respect to ω2 − k2 −m2 [when going from
Eq. (A3) to Eq. (34)]. This scheme indicates that one stays
near the physical relation between the frequency ω and the
wave vector k for a massive particle with mass m. In this
scheme, the final expression for the second- and third-order
contributions is

ðZΔωk − Δfree
ωk Þ ¼ −

λ2

24ð2πÞ2d
Z

ddk1ddk2ddk3
ωk1ωk2ωk3

δðk1 þ k2 þ k3Þ

×
ωk1 þ ωk2 þ ωk3

½ðωk1 þ ωk2 þ ωk3Þ2 −m2�2
1

ðωk1 þ ωk2 þ ωk3Þ2 − ðω2 − k2Þ

þ 2λ3

64ð2πÞ3d
Z

ddk1ddk2ddk3ddk4ddk01
ωk1ωk2ωk3ωk4ωk0

1

δðk1 þ k2 − k3 − k4Þδðk1 þ k2 þ k01Þ
ðωk1 þ ωk2Þ2 − ðωk3 þ ωk4Þ2

×

�
ωk3 þ ωk4 þ ωk0

1

½ðωk3 þ ωk4 þ ωk0
1
Þ2 −m2�2

ωk1 þ ωk2

ðωk3 þ ωk4 þ ωk0
1
Þ2 − ðω2 − k2Þ

−
ωk1 þ ωk2 þ ωk0

1

½ðωk1 þ ωk2 þ ωk0
1
Þ2 −m2�2

ωk3 þ ωk4

ðωk1 þ ωk2 þ ωk0
1
Þ2 − ðω2 − k2Þ

�
: ð35Þ
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The corresponding renormalized expressions for Z and λ0
are shown in Eqs. (A4) and (A5), respectively. From these
expressions, we observe that the previous Z [Eq. (32)] is
recovered for m2 ¼ 0, whereas the previous λ0 [Eq. (33)]
corresponds to the first-order expansion in m2, having no
contribution from the connected-2 diagram (as we have
already mentioned).
The beauty of the above regularization schemes is that

they allow one to express Z and λ0 in a very elegant form by
introducing two characteristic length scales: (a) a low-
energy length scale lm ¼ 1=m as set by the physical mass
m and (b) a high-energy dissipative length scale lγ ¼ γ1=3

as set by the friction parameter γ [4] and by passing from
sums to integrals with the rule proposed in Eq. (25). For
example, using the renormalization scheme of Eq. (32) for

the connection Z between free particles and clouds, we find
the following elegant equation:

Z ¼ 1þ λ2

24ð2πÞ2d I2ðl
2ε
m − l2ε

γ Þ

−
λ3

64ð2πÞ3d I3ðl
3ε
m − l3ε

γ Þ; ð36Þ

where

I2 ¼
Z

ddk1ddk2
k1k2jk1 þ k2j

1

ðk1 þ k2 þ jk1 þ k2jÞ3
; ð37Þ

and

I3 ¼
Z

ddk1ddk2ddk3
k1k2k3jk1 þ k3jjk2 þ k3j

×

�
1

k1 þ jk1 þ k3j − k2 − jk2 þ k3j
�

1

ðk2 þ jk2 þ k3j þ k3Þ3
−

1

ðk1 þ jk1 þ k3j þ k3Þ3
�

þ 1

k1 þ jk1 þ k3j þ k2 þ jk2 þ k3j
�

1

ðk2 þ jk2 þ k3j þ k3Þ3
þ 1

ðk1 þ jk1 þ k3j þ k3Þ3
��

: ð38Þ

VI. CALCULATION OF λ�

In Sec. III, we derived the propagator of the dissipative
quantum field theory up to third order in the interaction
parameter λ, which in Sec. IV we proved to be compatible
with the result from the Lagrangian approach in the limit of
zero dissipation. Then, in Sec. V, we showed how one can
regularize the result by properly defining the Z and λ0
parameters so that a finite expression is obtained. In this
section, we see that the general expression for the

third-order propagator leads naturally to the correct esti-
mate of the critical value λ� of the theory known in the
literature {see for example Eq. (10.201) of [14]}, which
was not possible to check with the expression for the
propagator up to second order [4].
The starting point is Eq. (24) without the connected-2

terms [the last line in Eq. (24)], because as we observed in
Sec. V they drop out. We simplify the analysis by working
in the limit s → 0, corresponding to the long-time or low-
energy behavior. Then, Eq. (24) reduces to

Δ̃s→0k ¼
−i
2ω2

k

þ iλ0

2ω4
k

−
λ2

48V2

i
ω4
k

X
k1;k2;k3∈K̄d

δk1þk2þk3;k

ωk1ωk2ωk3

1

ω̆k1 þ ω̆k2 þ ω̆k3

þ λ3

128V3

i
ω4
k

X
k1;k2;k3;k4;k01∈K̄

d

δk1þk2−k3−k4;0δk1þk2þk0
1
;k

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
1

ω̆k3 þ ω̆k4 þ ω̆k0
1

−
1

ω̆k1 þ ω̆k2 þ ω̆k0
1

�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
1

ω̆k3 þ ω̆k4 þ ω̆k0
1

þ 1

ω̆k1 þ ω̆k2 þ ω̆k0
1

��
: ð39Þ

The key observation to move on is that the product of the
two loops in Fig. 2 over momentum k1 (or, equivalently, k2)
and k3 (or, equivalently, k4) can be approximated as the
square of a single loop. This observation is also reported in
the literature for the two-loop contribution to the four-point

or vertex function in the D-vector formalism {see for
example p. 40 in [2] and pp. 281-282 in [16]}. We can
clearly see this by redesigning the Feynman diagram shown
in Fig. 2 in the form of the Feynman diagram shown
in Fig. 5.
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Based on this observation, we replace the pair of dummy
momenta ðk3; k4Þ with ðk1; k2Þ in the second, third, and
fourth lines of Eq. (39). Then, we can notice that between

the second- and third-order terms there is a common factor
(after relabeling the momentum k3 with k01 in the second-
order term). Thus, Eq. (39) reduces to

Δ̃s→0k ¼
−i
2ω2

k

þ iλ0

2ω4
k

−
λ2

48V2

i
ω4
k

X
k1;k2;k01∈K̄

d

δk1þk2þk0
1
;k

ωk1ωk2ωk0
1

1

½ðω̆k1 þ ω̆k2Þ þ ω̆k0
1
�

×

�
1 − λ

48

128V

X
k1;k2∈K̄d

δk1þk2þk0
1
;k

ωk1ωk2

1

ðω̆k1 þ ω̆k2Þ
2ðω̆k1 þ ω̆k2Þ þ ω̆k0

1

½ðω̆k1 þ ω̆k2Þ þ ω̆k0
1
�
�
: ð40Þ

The nice thing about Eq. (40) is that it looks very much like
the corresponding expression for the four-point correlation
function (the vertex) elaborated in [4]. This is extremely
beneficial because it allows us to extract the value of λ� by
following a similar analysis as in [4]. For example, we can
calculate the sums for any value of k1 or k2 (magnitudes
from 0 to ∞) appearing in the last term inside the brackets
in the last line of Eq. (40) by neglecting the contributions
from the momenta k and k01 (fixed magnitudes) both in the δ
function and in the expressions inside the sums,

λ
48

128V

X
k1;k2∈K̄d

δk1þk2þk0
1
;k

ωk1ωk2

1

ðω̆k1 þ ω̆k2Þ
2ðω̆k1 þ ω̆k2Þþ ω̆k0

1

½ðω̆k1 þ ω̆k2Þþ ω̆k0
1
�

¼ðfk1;k2g ≫ fk0
1
;kgÞ

λ
48

128V

X
k1;k2∈K̄d

δk1þk2;0

ωk1ωk2

2ðω̆k1 þ ω̆k2Þ
ðω̆k1 þ ω̆k2Þ2

¼ λ
48

128V

X
k1;k2∈K̄d

δk1þk2;0

ωk1ωk2

�
2ðωk1 þωk2Þþ2iðγk1 þ γk2Þ
ðωk1 þωk2Þ2þðγk1 þ γk2Þ2

�

¼ λ
48

128V

X
k1;k2∈K̄d

δk1þk2;0

ωk1ωk2

�
1

ω̆k1 þ ω̆k2

þ 1

ω̆�
k1
þ ω̆�

k2

�
; ð41Þ

where the SID assumption has been used when going from
the third to the fourth lines (to get rid of the frictional part in
the numerator). By applying the δ function in the last line of
Eq. (41) and passing from sums to integrals using Eq. (25),
we find

λ
48

128ð2πÞd
�Z

ddk1
1

ω3
k1

−
Z

ddk1
1

ω3
k1

γ2k1
ω2
k1
þ γ2k1

�

¼ λ
48

128ð2πÞd
�Z

ddk1
1

ω3
k1

− lε
γ

Z
ddq

q3

1þ q6

�
; ð42Þ

where we have also used the approximations ωk1 ≈ k1 and
γk1 ¼ γk41 for the large values of k1 dominating the integral;
we have also substituted q ¼ lγk1. Then, from Eq. (42) we
identify {see Eq. (1.95) and Eq. (2.76) in [4]} λ� as

1

λ�
¼ 48

128ð2πÞd
�Z

ddq
q3

1þ q6

�

⇒ λ� ¼ 8

3
ð2πÞd

�Z
ddq

q3

1þ q6

�
−1
; ð43Þ

which perfectly agrees with [4] [see, e.g., Eq. (2.77)], and
thus, for small ε, we obtain [4]

λ� ≈
16

3
π2ε: ð44Þ

VII. SUMMARY AND DISCUSSION

Within the context of the dissipative quantum field
theory developed in [4], we presented a perturbation
expansion of the two-point correlation function (the propa-
gator) of the scalar φ4 theory up to third order in the
interaction parameter λ, in the limit of zero temperature.
The calculations were carried out with two different
perturbation schemes, both of which gave identical results.
In both methods, we relied on symbolic calculations for the
handling of the operations needed in the intermediate
calculations. The expression for the third-order contribu-
tion, in particular, contains four blocks of terms, each one
comprising three types of diagrams: (i) connected-1,
(ii) connected-2, and (iii) unconnected. The terms that

FIG. 5. Redesign of Fig. 2 describing the topology of the
connected-1 Feynman diagram contributing to the propagator to
third order in λ.
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correspond to the unconnected Feynman diagram do not
contribute.
In the limit of vanishing dissipation (where complex

frequencies are replaced by real frequencies), our expres-
sion leads self-consistently to the result of the Lagrangian
quantum field theory upon integrating out the time or
energy component.
The resulting expression for the propagator was further

regularized by choosing properly the parameters Z and λ0 of
the dissipative theory, and it was confirmed that in the
continuum limit (limit of infinite volume where sums over
momentum vectors are replaced by integrals) no divergen-
ces appear for vanishing friction.
Moreover, the theory produces the correct result for the

critical coupling constant or interaction parameter λ� as a
function of space dimensionality d.
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APPENDIX: REGULARIZATION

In this Appendix, we present more details on the
regularization procedure discussed in Sec. V. More spe-
cifically, we report the intermediate expressions between
Eqs. (33) and (34), as well as the expressions which are
accompanied by Eq. (35).
Starting from Eq. (30), using the expressions for

Δ̃sk [Eq. (24)] and Δ̃free
sk (¼ð−iÞ=½2ðs2 þ ω2

kÞ�), inserting
Eqs. (32) and (33) (the resulting expressions for Z and λ0,
respectively) and considering the expansion in Eq. (31), we
obtain for γ ¼ 0,

ðs2 þ ω2
kÞ2ðZΔ̃sk − Δ̃free

sk Þ ¼ λ2

48V2

X
k1;k2;k3∈K̄d

i
ωk1ωk2ωk3

�
δk1þk2þk3;0 − δk1þk2þk3;k

ωk1 þ ωk2 þ ωk3

−
ðk2 þ s2Þδk1þk2þk3;0 − s2δk1þk2þk3;k

ðωk1 þ ωk2 þ ωk3Þ3
�

−
λ3

128V3

X
k1;k2;k3;k4;k01∈K̄

d

i
ωk1ωk2ωk3ωk4ωk0

1

δk1þk2−k3−k4;0

×

�
δk1þk2þk0

1
;0 − δk1þk2þk0

1
;k

ωk1 þ ωk2 − ωk3 − ωk4

�
1

ωk3 þ ωk4 þ ωk0
1

−
1

ωk1 þ ωk2 þ ωk0
1

�

þ δk1þk2þk0
1
;0 − δk1þk2þk0

1
;k

ωk1 þ ωk2 þ ωk3 þ ωk4

�
1

ωk3 þ ωk4 þ ωk0
1

þ 1

ωk1 þ ωk2 þ ωk0
1

�

−
ðk2 þ s2Þδk1þk2þk0

1
;0 − s2δk1þk2þk0

1
;k

ωk1 þ ωk2 − ωk3 − ωk4

�
1

ðωk3 þ ωk4 þ ωk0
1
Þ3 −

1

ðωk1 þ ωk2 þ ωk0
1
Þ3
�

−
ðk2 þ s2Þδk1þk2þk0

1
;0 − s2δk1þk2þk0

1
;k

ωk1 þ ωk2 þ ωk3 þ ωk4

�
1

ðωk3 þ ωk4 þ ωk0
1
Þ3 þ

1

ðωk1 þ ωk2 þ ωk0
1
Þ3
��

: ðA1Þ

The terms proportional to ðωka þ ωkb þ ωkcÞ−1 lead to a power-law divergence for d > 2, while the terms proportional to
ðωka þ ωkb þ ωkcÞ−3 lead to a logarithmic divergence for d ¼ 3. Thus, to avoid divergences, the sums

X
k1;k2;k3∈K̄3

i
ωk1ωk2ωk3

�
δk1þk2þk3;0 − δk1þk2þk3;k

ωk1 þ ωk2 þ ωk3

−
k2δk1þk2þk3;0

ðωk1 þ ωk2 þ ωk3Þ3
�
; ðA2aÞ

and
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X
k1;k2;k3;k4;k01∈K̄

3

i
ωk1ωk2ωk3ωk4ωk0

1

δk1þk2−k3−k4;0

×

�
δk1þk2þk0

1
;0 − δk1þk2þk0

1
;k

ωk1 þ ωk2 − ωk3 − ωk4

�
1

ωk3 þ ωk4 þ ωk0
1

−
1

ωk1 þ ωk2 þ ωk0
1

�

−
k2δk1þk2þk0

1
;0

ωk1 þ ωk2 − ωk3 − ωk4

�
1

ðωk3 þ ωk4 þ ωk0
1
Þ3 −

1

ðωk1 þ ωk2 þ ωk0
1
Þ3
�

þ δk1þk2þk0
1
;0 − δk1þk2þk0

1
;k

ωk1 þ ωk2 þ ωk3 þ ωk4

�
1

ωk3 þ ωk4 þ ωk0
1

þ 1

ωk1 þ ωk2 þ ωk0
1

�

−
k2δk1þk2þk0

1
;0

ωk1 þ ωk2 þ ωk3 þ ωk4

�
1

ðωk3 þ ωk4 þ ωk0
1
Þ3 þ

1

ðωk1 þ ωk2 þ ωk0
1
Þ3
��

; ðA2bÞ

must remain finite for an infinitely large lattice K̄3 of momentum vectors in d ¼ 3 dimensions. It can be shown that this is,
indeed, the case through a numerical calculation.
In fact, one can perform a more elegant analysis by passing from sums to integrals using the rule shown in Eq. (25), and

from the Kronecker δ symbol to the Dirac δ function with the help of Eq. (26b), to find (for k ¼ 0)

ðZΔωk −Δfree
ωk Þ ¼

λ2

24ð2πÞ2d
1

ðω2 −ω2
kÞ2

Z
ddk1ddk2ddk3
ωk1ωk2ωk3

δðk1 þ k2 þ k3Þ

×

�
1

ωk1 þωk2 þωk3

þ ω2 − k2

ðωk1 þωk2 þωk3Þ3
−

ωk1 þωk2 þωk3

ðωk1 þωk2 þωk3Þ2 − ðω2 − k2Þ
�

−
1

ðω2 −ω2
kÞ2

λ3

64ð2πÞ3d
Z

ddk1ddk2ddk3ddk4ddk01
ωk1ωk2ωk3ωk4ωk0

1

δðk1 þ k2 − k3 − k4Þδðk1 þ k2 þ k01Þ

×

�
1

ωk1 þωk2 −ωk3 −ωk4

�
1

ωk3 þωk4 þωk0
1

−
1

ωk1 þωk2 þωk0
1

�

þ 1

ωk1 þωk2 þωk3 þωk4

�
1

ωk3 þωk4 þωk0
1

þ 1

ωk1 þωk2 þωk0
1

�

þ ðω2 − k2Þ
ωk1 þωk2 −ωk3 −ωk4

�
1

ðωk3 þωk4 þωk0
1
Þ3 −

1

ðωk1 þωk2 þωk0
1
Þ3
�

þ ðω2 − k2Þ
ωk1 þωk2 þωk3 þωk4

�
1

ðωk3 þωk4 þωk0
1
Þ3 þ

1

ðωk1 þωk2 þωk0
1
Þ3
�

−
1

ωk1 þωk2 −ωk3 −ωk4

�
ωk3 þωk4 þωk0

1

ðωk3 þωk4 þωk0
1
Þ2 − ðω2 − k2Þ−

ωk1 þωk2 þωk0
1

ðωk1 þωk2 þωk0
1
Þ2 − ðω2 − k2Þ

�

−
1

ωk1 þωk2 þωk3 þωk4

�
ωk3 þωk4 þωk0

1

ðωk3 þωk4 þωk0
1
Þ2 − ðω2 − k2Þ þ

ωk1 þωk2 þωk0
1

ðωk1 þωk2 þωk0
1
Þ2 − ðω2 − k2Þ

��
; ðA3Þ

which can be further simplified to Eq. (34).
In view of the “on shell renormalization”, one can expand not with respect to ω2 − k2 but with respect to ω2 − k2 −m2

when going from Eq. (A3) to Eq. (34). The resulting new expressions for Z and λ0 are
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Z ¼ 1þ λ2

24V2

X
k1;k2;k3∈Kd

δk1þk2þk3;0

ωk1ωk2ωk3

ω̆k1 þ ω̆k2 þ ω̆k3

½ðω̆k1 þ ω̆k2 þ ω̆k3Þ2 −m2�2

−
λ3

64V3

X
k1;k2;k3;k4;k01∈K

d

δk1þk2−k3−k4;0δk1þk2þk0
1
;0

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

½ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 −m2�2 −

ω̆k1 þ ω̆k2 þ ω̆k0
1

½ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2 −m2�2

�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

½ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 −m2�2 þ

ω̆k1 þ ω̆k2 þ ω̆k0
1

½ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2 −m2�2

��
; ðA4Þ

and

λ0 ¼ λ2

24V2

X
k1;k2;k3∈Kd

δk1þk2þk3;0

ωk1ωk2ωk3

ω̆k1 þ ω̆k2 þ ω̆k3

ðω̆k1 þ ω̆k2 þ ω̆k3Þ2 −m2

−
λ3

64V3

X
k1;k2;k3;k4;k01∈K

d

δk1þk2−k3−k4;0δk1þk2þk0
1
;0

ωk1ωk2ωk3ωk4ωk0
1

×

�
1

ω̆k1 þ ω̆k2 − ω̆k3 − ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 −m2

−
ω̆k1 þ ω̆k2 þ ω̆k0

1

ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2 −m2

�

þ 1

ω̆k1 þ ω̆k2 þ ω̆k3 þ ω̆k4

�
ω̆k3 þ ω̆k4 þ ω̆k0

1

ðω̆k3 þ ω̆k4 þ ω̆k0
1
Þ2 −m2

þ ω̆k1 þ ω̆k2 þ ω̆k0
1

ðω̆k1 þ ω̆k2 þ ω̆k0
1
Þ2 −m2

��
: ðA5Þ

The final expression for the second- and third-order contributions to the propagator under the “on shell renormalization”
scheme is shown in Eq. (35) of the main text.
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